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Novel spectral characterization method for color printer
based on the cellular Neugebauer model
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The cellular Yule-Nielson spectral Neugebauer (CYNSN) model to characterize a typical CMYK (i.e., cyan,
magenta, yellow, and black) 4-ink color printer is presented. By reconstructing spectral reflectance, models
with high accuracy of spectral and colorimetric predictions are built. A novel cell-searching algorithm is
proposed and used together with the iteration method to invert the cellular Neugebauer model efficiently.
Large numbers of high quality hardcopy samples are produced to evaluate model performance and prove
the feasibility of the algorithm. The spectral-based model performs better compared with the usual model
based on CIE1931 XYZ tristimulus values.
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In the printing industry, color separation has always been
an important issue in predicting ink combination for ren-
dering a given color. Identifying printer characteristics
is very important. Additionally, for cross-media color
reproduction, image reproduction is required from com-
puter displays to printers[1]. Reconstructing spectral re-
flectance of a color target for reproduction offers many
advantages, such as higher accuracy and without any
problems associated with metamerism[2].

In this letter, the cellular Yule-Nielson spectral Neuge-
bauer (CYNSN) model was used to characterize a typi-
cal CMYK (i.e., cyan, magenta, yellow, and black) 4-ink
color printer. A novel cell-searching algorithm was pro-
posed together with the iteration method to invert the
model efficiently. Large numbers of high quality hard-
copy samples were produced. Corresponding spectral re-
flectances data were measured by a spectrophotometer in
order to evaluate model performance.

For a CMYK 4-ink printer, the classical Yule-Nielson
Neugebauer model[3,4] can be described as

R(λ) =
{ 16∑

i=1

wi[Ri(λ)]1/n
}n

, (1)

where i denotes the ith of the 16 primary colors com-
posed of all the possible combinations of the C, M, Y,
K colors; R(λ) and Ri(λ) are the spectral reflectances of
the desired sample and the ith primary color at wave-
length λ, respectively; w i is defined by the so-called
Demichel equation[5], dependent on the normalized ink
amount values of the color target; n is the coefficient of
the power function, known as the Yule-Nielson n-factor.
Yule-Nielson modification[4] is an efficient way to correct
the problem caused by nonlinearity between the mea-
sured and predicted reflectances; it uses the power func-
tion. Another approach to improve model performance is
to divide the classical Neugebauer model into small cells.

Equation (1) was applied on each cell. Prior to this,
in each cell, the amount values of the colorant were re-
normalized to the range of 0–1. Generally, the more

cellular levels used, the higher the accuracy obtained;
however, in this present work, more samples need to be
measured. Normally, two improved methods are used to-
gether as the CYNSN model.

In recent years, the inversion of the spectral Neuge-
bauer model has been conducted through the linear re-
gression iteration (LRI) method[6−8]. This method is
an optimization process, minimizing the reflectance root
mean square (RRMS) error to find the best ink amount
values to match the spectral reflectances of the desired
color. RRMS could show the matching grade between
the predicted and the measured spectral reflectances, and
could be calculated by

RRMS =

√
(R1 − R2) × (R1 − R2)T

N
, (2)

where R1 and R2 are the predicted and the measured
spectral reflectances in a vector row form, respectively;
T is the matrix transpose operation; N is the number of
elements in a set of spectral reflectances.

Li et al. further improved the computation stage by
introducing “QR” decomposition based on the matrix
operation[9]. In addition, a different criterion for the op-
timization process was chosen to achieve spectral match,
colorimetric match, or the combination of the two[5].

In terms of inverting the cellular Neugebauer model,
the iteration process was performed inside each cell. This
suggests that every cell could provide an optimized result
by itself to best match the desired color. However, an
optimal cell needs to be selected first. The straightfor-
ward approach is to obtain the prediction results from
all cells by iteration, and then make a decision according
to a certain criterion, such as the least RRMS differ-
ence or CIE color difference. However, this might result
in too much computational cost, especially when using
more cellular levels, as it greatly increases the number of
times of iteration. Urban et al. proposed the cellular LRI
(CLRI) method and expanded the iteration into multi-
ple cells instead of from inside one cell alone[7]. They
treated each colorant separately. The time required for
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iteration from cell to cell (i.e., by changing only one col-
orant, such as cyan) in relation to all other colorants
was fixed until the optimized value of the single colorant
was obtained. The other colorants were then processed
in series by using the same steps. This method could
significantly reduce the number of times of iteration;
thus, it could be implemented efficiently. However, when
employed separately, the processing colorants might en-
counter some problems, especially in systems containing
more than three colorants. Since it does not consider
interactions between different colorants, the initial cell
initializing the iteration, as well as the processing order
of the colorants, could influence the final optimal results.
This phenomenon is more apparent when the number of
primary colorants is increased.

In this letter, a novel cell-searching algorithm is pro-
posed. It can reduce cell-searching range through pres-
election while simultaneously considering changes in all
colorants. It also requires fewer cells, and hence fast pro-
cessing speed. The proposed inverse CYNSN model is
described in detail by Fig. 1.

Step 1: Measure the reflectance spectra of all the cell
corners and record them as training data.

Step 2: For each of the cells, calculate the reflectance
spectrum Ri(λ) of an imaginary cell center to represent
that cell simply by averaging the spectral reflectances of
all the corners of that cell at each wavelength.

Step 3: For the desired spectral reflectance R, calculate
the differences ∆D i between each Ri and R, according to
the preselection criterion.

In this letter, the RRMS difference was used for the
spectral match. We sorted the cells in ∆D i ascending
order. The rearranged indices of the cells were denoted
as k1, k2,· · ·, kt. The first t cells with the least ∆D i were
chosen as a subset in order to proceed to the next step.
Steps 1–3 can be considered as the preselection process.
By referring to the choice of the number t, which rep-
resents the number of cells chosen as a subset after the
preselection, 2m+1 was used for the m-colorant system.
In an m-dimensional space, each cell has 2m neighboring
cells; thus, it is reasonable to assume that the optimal

cell exists in the first 2m+1 cells with the smallest differ-
ences from the target color. The supposition was proven
feasible by experimental results in the following content.
In this regard, the required searching cell number does
not increase with the cellular level, which is superior to
the CLRI method mentioned earlier.

Step 4: Predict the target reflectance spectrum in all
of the t chosen cells by the iteration method.

In so doing, t sets of colorant values were obtained.
Step 5: Process all the t sets of colorant values by the

forward CYNSN model to obtain t sets of predicted spec-
tral reflectances.

This approach helps us decide which of the cells should
be used. The chosen cell must have corresponding spec-
tral reflectances manifesting the smallest difference with
the desired color according to the decision criterion.
RRMS was used so that the colorant values predicted
in this cell could be treated as the final result of the in-
verse CYNSN model.

In the experiment stage, a typical CMYK 4-ink printer,
the HP DesignJet 1055 CM, was employed and charac-
terized. GretagMacbeth Spectrolino spectrophotometer
was used to measure the spectral reflectance of the sam-
ples. The training samples contained 10000 grid color
patches. Their normalized ink amount values were the
full 10×10×10×10 combinations of the 10 steps for each
of the C, M, Y, K color coordinates. The testing samples
involved 256 other regular grid color patches, indepen-
dent of the training samples, with four steps of 0, 0.3333,
0.6667, and 1 in each of the C, M, Y, K color coordi-
nates. The amount of the ink was directly controlled by
the “Adobe PostScript” page description language, which
was quite helpful in obtaining accurate normalized ink
amount values for the model.

Large numbers of training data were obtained for build-
ing the cellular Neugebauer model, but not all of them
were necessary. To find out how many cellular levels
could achieve the best model performance with the fewest
measured samples, some mathematical testing was con-
ducted based on the CYNSN model with different cellular
levels, ranging from 2 to 10. The 256 testing samples

Fig. 1. Flow chart of the cell-searching algorithm for the inverse CYNSN model.
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Table 1. Average Prediction Color Differences ∆E∗
ab (D50/2˚)

of XYZ -Based Method and Spectral-Based Method

Cellular Level 2 3 4 5 6 8 10

XYZ -Based Method 4.98 2.33 1.33 0.85 0.70 0.69 0.68

Spectral-Based Method 3.93 1.61 1.08 0.75 0.69 0.68 0.68

were predicted by both the XYZ -based and spectral-
based forward CYNSN models with different cellular
levels. The XYZ -based models were obtained by replac-
ing reflectance “R” in Eq. (2) with XYZ tristimulus
values. Next, the average CIELAB color differences for
all the predicted and measured spectral reflectances were
calculated. The results are summarized in Table 1.

The more cellular levels used, the better the model
performance became. Additionally, the fewer the cel-
lular levels, the significantly better the accuracy of the
spectral-based method was compared with the XYZ -
based method. The spectral-based method (especially
in the model using three cellular levels) could satisfy
the image color difference threshold (i.e., 2.2 CIELAB
units)[10], a possible threshold for human vision to judge
image color difference between two images; the XYZ -
based method could not perform as such. As a result,
the spectral-based method was very effective in achiev-
ing higher model accuracy with fewer measured samples.
When using more cellular levels (especially more than
six), both the two methods obtained similar prediction
accuracy (i.e., about a mean of 0.68 CIELAB units).
Hence, model performance was mainly determined by
cellular levels instead of the applied method. According
to the above discussion, only three cellular levels were
sufficiently accurate for the spectral model; six cellular
levels achieved the best performance.

The forward model could accomplish very high model
prediction accuracy. However, in practice, the inverse
model provides more value. To investigate the choice
of t number mentioned earlier in the cell-searching algo-
rithm, for each testing sample, the iteration process was
employed for all the 625 cells in a 6-level CYNSN model.
The optimal cell was obtained by identifying the smallest
RRMS difference from the target. The rearranged cell
index of the optimal cell for each sample in the preselec-
tion was recorded. This index was listed as the sequence
number of the optimal cell in the preselected cell array.
As presented in this letter, 192 testing samples were used
for testing. Their corresponding results are shown in Fig.
2. In our method, the recommended value for t is 17 for
the CMYK 4-ink printer. In Fig. 2, for the 180 of 192
samples, the rearranged cell indices were under 17, which
indicate that the optimal cell generally existed in the first
17 cells after preselection. For the other 12 samples, the
results were different in terms of the iteration in all the
625 cells and in the first 17 cells. By observing further
the other 12 samples, 10 of them were of nearly full black
color because the cell centers were becoming denser with
the addition of more black ink. The optimal result in
the first 17 cells was highly accurate. In other words, the
same color could be obtained in different mixes for the
samples despite the high amount of black ink. In reality,
however, increasing the amount of black ink seldom em-
ployed. The peak errors occurred in the low-black areas

where the cell centers were dispersed. A wrong cell search
would cause a huge color difference in those areas, similar
to the remaining 2 of the 12 samples. Some restrained
criterion was therefore added in the algorithm to solve
the problem. When the optimal spectral reflectance in
the 17-cell subset exhibited large differences in relation
to the target, which could be justified by a predefined
threshold (e.g., a RRMS of over 0.15 or ∆E∗

ab (D50/2˚ )
over 10 in this study), the searching range was enlarged
by adding the next 16 cells onto the subset sporadically,
but in accordance to the cell order in the preselection
array. The optimal result in the new subset could then
be obtained. The difference from the recalculated target
and from the new operation manifested as a loop; con-
sequently, the difference was below the threshold. The
approach could effectively correct any accidental wrong
cell search, and normally, it only required 1 or 2 times of
enlargement without inducing much computational cost.
This made the algorithm more robust and flexible.

Based on the iteration method and the proposed cell-
searching algorithm, the measured spectral reflectance
data of the 256 testing samples were used by the in-
verse 6-level CYNSN model to predict their CMYK
values. The samples were further processed by the
forward CYNSN model to predict corresponding spec-
tral reflectance data, in which the error of the forward
model was employed. The RRMS and ∆E∗

ab (D50/2˚)
of the two sets of spectral reflectance data (Fig. 3) were

Fig. 2. Rearranged optimal cell indices of the 192 testing
samples.

Fig. 3. (a) Measured and (b) predicted spectral reflectances
of all the 256 testing samples.
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Table 2. Inverse CYNSN Model Performance in
Terms of RRMS Error and CIELAB Color

Difference ∆E∗
ab (D50/2˚)

Max Mean Median

∆E∗
ab 13.6368 1.5929 0.8355

RRMS 0.1337 0.0104 0.0025

Fig. 4. Inverse CYNSN model prediction results of all the
256 testing samples in terms of RRMS error and CIELAB
color difference ∆E∗

ab (D50/2˚).

Fig. 5. Measured and predicted spectral reflectance diagrams
of samples (a) “a” and (b) “b” .

calculated to estimate the model performance. The re-
sults are shown in Table 2 and Fig. 4.

The average prediction accuracy of the inverse method,
as shown in Table 2, could achieve the color difference
of 1.59 CIELAB units. This is rather outstanding com-
pared with those presented by reports using other similar
experiments[11]. In Fig. 4, most of the points are dis-
tributed near the point of origin; they have low RRMS
and ∆E∗

ab values. In this area, the RRMS and ∆E∗
ab

values showed consistent trends, indicating that excel-
lent spectral and colorimetric match was accomplished
between the original color and the reproduction. As for
the samples being off the point of origin, they had poor
prediction results and manifested poor consistency.

Two samples, denoted as sample “a” and sample “b”,

showing an extreme situation in Fig. 4, were explored.
The ∆E∗

ab of sample “a” was 13.63, the highest value
among all the 256 testing samples, but its RRMS value
(0.035) was not correspondingly significant. Meanwhile,
sample “b” was the complete opposite; it has a high
RRMS value (0.099) but a low ∆E∗

ab (1.70). To investi-
gate this phenomenon, the measured and predicted spec-
tral reflectance diagrams of the two samples were illus-
trated (Fig. 5). The high ∆E∗

ab of sample “a” was due
to its spectral differences being mainly distributed in the
wavelength range of 480–680 nm, the light component
of which greatly influenced the XYZ tristimulus values.
On the other hand, sample “b” had significant spectral
differences in the longer wavelength range (i.e., over 650
nm) at which the human eyes are not so sensitive to. A
better match in the middle wavelengths was observed,
which resulted in a relatively small colorimetric differ-
ence.

In conclusion, the CYNSN models with high accu-
racy is built with optimized parameters and confirmed
by experiments. The methodology involved in inverting
the CYNSN model is discussed. A novel cell-searching
method with supplementary correcting method is pro-
posed, and this presents advantages, especially for mod-
els with more cellular levels. The spectral-based method
is compared with the XYZ -based method in terms of pre-
diction accuracy. Experimental results indicate that with
fewer cellular levels, the accuracy of the spectral method
is significantly better compared with the XYZ method.
As to the problem of the spectral model, whereby using
reflectance data requires high computational cost, further
studies should be conducted to improve the calculation
algorithm and the processing speed.

This work was sponsored by Clariant Co., Ltd.
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